Universe the Unified Physics- Continuing research centre

Universe is all of time and space and its contents. The Universe includes planets, stars, galaxies, the contents of intergalactic space, the smallest subatomic particles, and all matter and energy. The observable universe is about 28 billion parsecs (91 billion light-years) in diameter at the present time. The size of the whole Universe is not known and may be infinite.Observations and the development of physical theories have led to inferences about the composition and evolution of the Universe. Universe is customarily defined as everything that exists, everything that has existed, and everything that will exist.According to our current understanding, the Universe consists of three constituents: spacetime, forms of energy (includingelectromagnetic radiation and matter), and the physical laws that relate them. The Universe also encompasses all of life, all of history, and some philosophers and scientists even suggest that it encompasses ideas such as mathematics.The word universe derives from the Old French word univers, which in turn derives from the Latin word universum. The Latin word was used by Cicero and later Latin authors in many of the same senses as the modern English word is used. The Latin word derives from the poetic contraction unvorsum — first used by Lucretius in Book IV (line 262) of his De rerum natura (On the Nature of Things) — which connects un, uni (the combining form of unus, or "one") with vorsum, versum (a noun made from the perfect passive participle of vertere, meaning "something rotated, rolled, changed"). An alternative interpretation of unvorsum is "everything rotated as one" or "everything rotated by one". In this sense, it may be considered a translation of an earlier Greek word for the Universe, περιφορά, (periforá, "circumambulation"), originally used to describe a course of a meal, the food being carried around the circle of dinner guests.This Greek word refers to celestial spheres, an early Greek model of the Universe. Regarding Plato's Metaphor of the Sun, Aristotle suggests that the rotation of the sphere of fixed stars inspired by the prime mover motivates, in turn, terrestrial change via the Sun. Astronomical and physical measurements, such as the Foucault pendulum, demonstrate that the Earth rotates on its axis .A term for "universe" among the ancient Greek philosophers from Pythagoras onwards was τὸ πᾶν tò pân ("the all"), defined as all matter and all space, and τὸ ὅλον tò hólon ("all things"), which did not necessarily include the void. Another synonym was ὁ κόσμος ho kósmos (meaning the world, the cosmos). Synonyms are also found in Latin authors (totum, mundus, natura) and survive in modern languages, e.g., the German words Das All, Weltall, and Natur for Universe. The same synonyms are found in English, such as everything (as in the theory of everything), the cosmos (as incosmology), the world (as in the many-worlds interpretation), and nature (as in natural laws or natural philosophy).Throughout recorded history, cosmologies and cosmogonies, including scientific models, have been proposed to explain observations of the Universe. The earliest quantitative geocentric models were developed by ancient Greek philosophers andIndian philosophers. Over the centuries, more precise astronomical observations led to Nicolaus Copernicus'sheliocentric model of the Solar System and Johannes Kepler's improvement on that model with elliptical orbits, which was eventually explained by Isaac Newton's theory of gravity. Further observational improvements led to the realization that the Solar System is located in a galaxy composed of billions of stars, the Milky Way. It was subsequently discovered that our galaxy is just one of many. On the largest scales, it is assumed that the distribution of galaxies is uniform and the same in all directions, meaning that the Universe has neither an edge nor a center. Observations of the distribution of these galaxies and their spectral lines have led to many of the theories of modern physical cosmology. The discovery in the early 20th century that galaxies are systematically redshifted suggested that the Universe is expanding, and the discovery of the cosmicmicrowave background radiation suggested that the Universe had a beginning.Finally, observations in the late 1990s indicated the rate of the expansion of the Universe is increasing[16] indicating that the majority of energy is most likely in an unknown form called dark energy. The majority of mass in the universe also appears to exist in an unknown form, called dark matter. The Big Bang theory is the prevailing cosmological model describing the development of the Universe. Space and time were created in the Big Bang, and these were imbued with a fixed amount of energy and matter; as space expands, the density of that matter and energy decreases. After the initial expansion, the Universe cooled sufficiently to allow the formation first of subatomic particles and later of simple atoms. Giant clouds of these primordial elements later coalesced through gravity to form stars. Assuming that the prevailing model is correct, the age of the Universe is measured to be 13.798±0.037 billion years.

 

There are many competing hypotheses about the ultimate fate of the Universe. Physicists and philosophers remain unsure about what, if anything, preceded the Big Bang. Many refuse to speculate, doubting that any information from any such prior state could ever be accessible. There are various multiverse hypotheses, in which some physicists have suggested that the Universe might be one among many universes that likewise exist. The Universe is all of time and space and its contents. The Universe includes planets, stars, galaxies, the contents of intergalactic space, the smallest subatomic particles, and all matter and energy. The observable universe is about 28 billion parsecs (91 billion light-years) in diameter at the present time. The size of the whole Universe is not known and may be infinite.Observations and the development of physical theories have led to inferences about the composition and evolution of the Universe.Throughout recorded history, cosmologies and cosmogonies, including scientific models, have been proposed to explain observations of the Universe. The earliest quantitative geocentric models were developed by ancient Greek philosophers and Indian philosophers. Over the centuries, more precise astronomical observations led to Nicolaus Copernicus's heliocentric model of the Solar System and Johannes Kepler's improvement on that model with elliptical orbits, which was eventually explained by Isaac Newton's theory of gravity. Further observational improvements led to the realization that the Solar System is located in a galaxy composed of billions of stars, the Milky Way. It was subsequently discovered that our galaxy is just one of many. On the largest scales, it is assumed that the distribution of galaxies is uniform and the same in all directions, meaning that the Universe has neither an edge nor a center. Observations of the distribution of these galaxies and their spectral lines have led to many of the theories of modern physical cosmology. The discovery in the early 20th century that galaxies are systematically redshifted suggested that the Universe is expanding, and the discovery of the cosmic microwave background radiation suggested that the Universe had a beginning. Finally, observations in the late 1990s indicated the rate of the expansion of the Universe is increasing indicating that the majority of energy is most likely in an unknown form called dark energy. The majority of mass in the universe also appears to exist in an unknown form, called dark matter. The Big Bang theory is the prevailing cosmological model describing the development of the Universe. Space and time were created in the Big Bang, and these were imbued with a fixed amount of energy and matter; as space expands, the density of that matter and energy decreases. After the initial expansion, the Universe cooled sufficiently to allow the formation first of subatomic particles and later of simple atoms. Giant clouds of these primordial elements later coalesced through gravity to form stars. Assuming that the prevailing model is correct, the age of the Universe is measured to be 13.798±0.037 billion years.There are many competing hypotheses about the ultimate fate of the Universe. Physicists and philosophers remain unsure about what, if anything, preceded the Big Bang. Many refuse to speculate, doubting that any information from any such prior state could ever be accessible. There are various multiverse hypotheses, in which some physicists have suggested that the Universe might be one among many universes that likewise exist.



Universal dynamics laboratory

Memorandum of association invited from vedic and sanskrit universities worldwide Email- [email protected]